sábado, 6 de março de 2010

"Vamos Trissectar um ângulo?" - por Tio Nicomedes

Olá galerinha do LeGauss!

Hoje venho amenizar uma das suas maiores angústias! Sim falo sobre a solução daquele problema que você viu enquanto estudava extensão de corpos, números construtíveis...

Sim! Eu vou mostrar a minha solução para a trissecção do ângulo, o problema que todos diziam ser impossível de ser resolvido!

Tá não é bem assim...

Na verdade, quando estudamos o corpo dos números construtíveis, etc, provamos que é impossível trissectar um ângulo qualquer utilizando apenas régua e compasso. Essa solução foi bolada pelo matemático Nicomedes que viveu mais ou menos entre 280 e 210 a.C e para resolver esse problema ele usou uma curva que ele costumava estudar, que se chama conchóide.

Eu direi agora o lugar geométrico que uma conchóide de uma reta representa, para saber como desenhar uma clique no link acima ou aqui.

Dada uma reta , a sua conchóide de intervalo com relação ao ponto é uma curva com a seguinte propriedade:

Dado um ponto sobre esta curva traçamos o seguimento agora marcamos o ponto que é a interseção de com . Temos que o comprimento de é constante e igual a .



O exemplo acima mostra a conchóide da reta com intervalo em relação a origem. Isto é, os segmentos e tem comprimento

Ok, espero que tenham entendido até aqui, vamos agora realmente à solução do problema.

Vamos trissectar um ângulo arbritrário. Primeiro traçamos esse ângulo em relação ao eixo



Marcamos os pontos A e B como na figura acima e chamamos de o tamanho do seguimento .
Agora desenhamos a conchóide da reta com intervalo em relação à origem.



Após isso marcamos também o ponto que é obtido traçando-se uma linha vertical a partir de e marcando a intersecção dessa vertical com a conchóide.

Agora traçamos o seguimento



E por final marcamos o ponto que dista de note que ele é o ponto médio do seguimento .



Bom, vamos mostrar agora que .

Preste atenção no triângulo .
Podemos considerar o ponto como o centro de um círculo de raio , além disso, lembre-se que o ângulo é reto, logo o triângulo está inscrito nessa circunferência e o segmento é um raio do círculo, portanto tem medida .

Uma imagem para quem teve dificuldade de enxergar:


Temos agora o seguinte esquema:


Sendo .
Vemos agora que basta provar que e assim teremos trissectado o ângulo .

Sabemos que , pois são alternos externos.
Além disso é um ângulo externo do triângulo que é isósceles, logo temos que:

E como também é isósceles,

E isso termina o problema!

Espero que tenham curtido ;^)

Obs:

Não usem o gimp para desenhar matemática!






2 comentários: